2209.10055v1 [cs.LG] 21 Sep 2022

arxXiv

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

Lamarckian Platform: Pushing the Boundaries of
Evolutionary Reinforcement Learning towards
Asynchronous Commercial Games

Hui Bai, Ruimin Shen, Yue Lin, Botian Xu, and Ran Cheng, Senior Member, IEEE

Abstract—Despite the emerging progress of integrating evo-
lutionary computation into reinforcement learning, the absence
of a high-performance platform endowing composability and
massive parallelism causes non-trivial difficulties for research and
applications related to asynchronous commercial games. Here
we introduce Lamarckian' — an open-source platform featur-
ing support for evolutionary reinforcement learning scalable to
distributed computing resources. To improve the training speed
and data efficiency, Lamarckian adopts optimized communica-
tion methods and an asynchronous evolutionary reinforcement
learning workflow. To meet the demand for an asynchronous
interface by commercial games and various methods, Lamarckian
tailors an asynchronous Markov Decision Process interface and
designs an object-oriented software architecture with decoupled
modules. In comparison with the state-of-the-art RLIlib, we
empirically demonstrate the unique advantages of Lamarckian
on benchmark tests with up to 6000 CPU cores: i) both the
sampling efficiency and training speed are doubled when running
PPO on Google football game; ii) the training speed is 13 times
faster when running PBT+PPO on Pong game. Moreover, we also
present two use cases: i) how Lamarckian is applied to generating
behavior-diverse game Al ii) how Lamarckian is applied to game
balancing tests for an asynchronous commercial game.

Index Terms—reinforcement learning, evolutionary computa-
tion, evolutionary reinforcement learning, asynchronous commer-
cial games, platform.

I. INTRODUCTION

Reinforcement learning (RL), as a powerful tool for sequen-
tial decision-making, has achieved remarkable successes in a
number of challenging tasks varying from board games [1],
arcade games [2], robot control [3], scheduling problems [4]
to autonomous driving [5]. Despite that RL algorithms have
been widely assessed on game benchmarks (e.g., Atari games
[6], ViZDoom [7], and DeepMind Lab [8]), the applications
of RL in commercial games (e.g., StarCraft I [9] & II [10],

H. Bai and R. Shen contribute equally to this work.

H. Bai, B. Xu, and R. Cheng are with the Guangdong Key Laboratory
of Brain-Inspired Intelligent Computation, Department of Computer Science
and Engineering, Southern University of Science and Technology, Shen-
zhen 518055, China. E-mail: huibaimonky @ 163.com, btx0424 @outlook.com,
ranchengen @gmail.com. (Corresponding author: Ran Cheng)

R. Shen and Y. Lin are with the NetEase Games AI Lab,
Guangzhou 510653, China. E-mail: shenruimin@corp.netease.com,
gzlinyue @corp.netease.com.

This work was supported by the National Natural Science Foundation of
China (No. 61906081), the Shenzhen Science and Technology Program (No.
RCBS20200714114817264), the Guangdong Provincial Key Laboratory (No.
2020B121201001), and the Program for Guangdong Introducing Innovative
and Entrepreneurial Teams (Grant No. 2017ZT07X386).

The code and demonstrational setup of Lamarckian are publicly available
at https://github. com/lamarckian/lamarckian.

and Dota2 [11]) have raised new issues to be considered, e.g.,
partially observed maps, large state space and action space,
delayed credit assignment, etc. Besides, when applying RL
to real-world scenarios, there are also a number of technical
challenges such as brittle convergence properties caused by
sensitive hyperparameters, temporal credit assignment with
long time horizons and sparse rewards, difficult credit assign-
ments in multi-agent reinforcement learning, lack of diverse
exploration, a set of conflicting objectives for rewards, etc.

To meet the above challenges, recently, there has been
an emerging progress in integrating RL with evolutionary
computation (EC) to address the above challenges. In first-
person multiplayer games, the Population Based Training
(PBT) trains a population of agents to dynamically optimize
hyperparameters for self-play [12]. In various benchmark
games of OpenAl Gym [6], the Evolutionary Reinforcement
Learning [13] and Collaborative Evolutionary Reinforcement
Learning [14] take the advantages of EC to make up for
some deficiencies in RL, such as difficult credit assignment,
lack of effective exploration, and brittle convergence through
a fitness metric. EMOGI generates desirable styles of game
artificial intelligence (AI) by a multi-objective EC algorithm
[15]. Wuji combines EC and RL for automated game testing
to detect game bugs by exploring states as much as possible
[16]. Besides, under the names of neuroevolution/derivative-
free reinforcement learning, Evolution strategies (ESs) and
Genetic Algorithms (GAs) have been used to optimize policy
networks, which avoids the gradient vanishing problem [17].
In brief, the literature has demonstrated promising potentials
for integrating EC to RL, despite that the development of
related research and application is still in its infancy.

While reinforcement learning enjoys the advances of several
state-of-the-art platforms or frameworks [18], [19], [20], [21],
the literature is still in the absence of a platform or framework
specifically tailored to evolutionary reinforcement learning
(EvoRL)?. Moreover, current distributed platforms do not use
computational resources efficiently, and thus the training of RL
is extremely time-consuming for complex commercial games.
Therefore, Lamarckian exactly meets the rigid demand for
such a highly decoupled, high-performance, scalable imple-
mentation of a distributed architecture, to support research and
engineering in EvoRL. Most importantly, Lamarckian fully
supports the implementations of evolutionary multi-objective

%In this work, the general evolutionary reinforcement learning is abbrevi-
ated as EvoRL for short.

http://huibaimonky@163.com
http://btx0424@outlook.com
http://ranchengcn@gmail.com
http://shenruimin@corp.netease.com
http://gzlinyue@corp.netease.com
https://github.%20com/lamarckian/lamarckian

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

optimization, which has demonstrated promising potentials in
solving specific RL problems involving multiple objectives to
be considered simultaneously [22], [23].

Intrinsically, EvoRL can be seen as an evolutionary dis-
tributed RL paradigm requiring delicate management of com-
puting resources for asynchronous training. Hence, in addition
to meeting the rigid demand of EvoRL as mentioned above,
Lamarckian is also dedicated to improving data efficiency
and training speed of general distributed RL. Despite that
some recent works have successfully scaled RL methods
(e.g. PPO [24] and IMPALA [25]) to large-scale distributed
computing systems [11], the policy-lag [25] is still an open
issue. In distributed RL, policy-lag happens when a learner
policy is several updates ahead of an actor’s policy when an
update occurs, thus causing severe defects in convergence and
stability. To address the issue of policy-lag, methods such as
clipped surrogate objective [24] and V-trace [25] have been
proposed. Apart from the delicate designs from methodology
perspective, it has been evidenced that the improvements from
the engineering perspective could also significantly alleviate
policy-lag, as did in the case of SEED RL [26]. Specifically,
Lamarckian is tailored for such a purpose from two aspects.
First, an asynchronous tree-shaped data broadcasting method
is proposed to reduce the policy-lag and alleviate the commu-
nication bottleneck of learners. Second, having inherited high
scalability of the state-of-the-art Ray [27], Lamarckian further
improves the efficiency of distributed computing and increases
throughput by coupling Ray with ZeroMQ.

From the engineering perspective, game environmental in-
terfaces provide a system of API components allowing players
to interact with the game story and break into the game space.
For example, the interfaces receive actions from players and
return the next state of the game environment to the players.
In this paper, game environmental interfaces can be divided
into two types: synchronous interfaces and asynchronous in-
terfaces. In synchronous interfaces (e.g., OpenAl Gym), a tick
moves to the next tick only when it receives actions from
all players. In asynchronous interfaces (e.g., most commercial
games), each player is controlled independently and asyn-
chronously. Consequently, if a player is off-line, the other play-
ers and the main tick will continue moving without waiting.
To meet such requirements of asynchronous commercial game
environments, players with different roles are expected to in-
teract with the environment independently. Thus, Lamarckian
is designed on the basis of an asynchronous Markov Decision
Process (MDP, e.g., modeled by game playing) interface,
which is highly decoupled by object-oriented programming.
With these tailored designs, Lamarckian is shipped with a
number of representative algorithms in EC and RL algorithms
as summarized in TABLE I. By simple configurations, EC
algorithms can be easily integrated with RL algorithms in
Lamarckian. Meanwhile, Lamarckian has good scalability in
terms of adding new algorithms, new environments, or new
DNN models. In brief, our main contributions of Lamarckian
can be summarized as:

« A highly decoupled, high-performance, scalable platform

tailored for EvoRL is delivered.

o To accelerate training speed in large-scale distributed

computing, two methods are proposed from the engineer-
ing perspectives: i) broadcasting data from the learner to
actors by an asynchronous tree-shaped data broadcasting
method; and ii) coupling high scalability of Ray with high
efficiency of ZeroMQ.

o A highly decoupled, asynchronous MDP interface is de-

signed for asynchronous commercial game environments.

« An object-oriented software architecture with decoupled

modules is developed to support various problems and
algorithms in RL and EC.

The organization of the paper is as follows. Section II
gives the background and related work. Section III describes
the asynchronous distributed designs. Section IV provides the
benchmark experiments, and Section V provides two use cases.
Finally, Section VI concludes the paper.

TABLE I
THE MAIN-STREAM ALGORITHMS AND BENCHMARKS IMPLEMENTED IN
LAMARCKIAN.

Modules Implementations

A3C [28], PPO [24], IMPALA [25], and DQN [29], etc.
PBT+self-play [12], EMOGI [15], Wuji [16], etc.
OpenAl Gym [6], Google football [30], etc.
single-objective GA [31], multi-objective NSGA-II [32], etc.
multi-objective DTLZ [33] and ZDT [34], etc.

RL algorithms
EvoRL algorithms
RL benchmarks
EC algorithms
EC benchmarks

II. BACKGROUND AND RELATED WORK

In this section, we first present the definition of MDP and
the formulation of RL in Section II-A, and then describe EC
and EvoRL in Section II-B. Next, we discuss the previous
RL platforms and frameworks in Section II-C. Finally, we
summarise and discuss essential terminologies in Section II-D.

A. RL and MDP

RL is a special branch of Al considering the interactions be-
tween agents and an environment towards maximum rewards.
The problem that an agent acts in a stochastic environment by
sequentially choosing actions over a sequence of time steps to
maximise a cumulated reward can be modeled as a Markov
Decision Process.

Definition 1. (Markov Decision Process) An MDP is usually
defined as < S, A, T, R, pg,y >, with a state space .S, an
action space A, a stochastic transition function 7: S x A —
P(S) representing the probability distribution over possible
next states, a reward function R: S x A — R, an initial state
distribution pg: S — Repo,17, and a discount factor € [0, 1).

At each discrete time step ¢, given the current state s; € S,
the agent selects actions a; € A according to its policy 7y :
S — P(A), where P(A) is the set of probability measures
on A and 6 € R™ is a vector of n parameters, and 7y (as|s;)
is the conditional probability density at a; given the input s;
associated with the policy. The agent’s objective is to learn a
policy to maximize the expected cumulative discounted reward
from the start state:

J(7) = Epynir [Z wtn] ,)

t=0

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

where sg ~ po(so), ar ~ m(s¢), St41 ~ T(-|s¢,a¢), and ry =
R(St, Q¢) .

In practice, asynchronous commercial games often involve
multiple players, where the main tick will continue moving
without waiting off-line players. In this case, an asynchronous
MDP interface will be required for dealing with the interac-
tions between agents and the environment.

B. EC and EvoRL

Evolutionary computation (EC) generally refers to the fam-
ily of population-based stochastic optimization algorithms
(e.g., Population Based Training (PBT) [35], Evolutionary
Strategy (ES) [1], Genetic Algorithm (GA) [36], etc.) inspired
by natural evolution. Specifically, an EC algorithm first initial-
izes a population of candidate solutions, and then it enters an
iterative loop: the candidate solutions in the current population
are pairwisely mated to undergo the permutation operations
(i.e., crossover and mutation) to generate new offspring candi-
date solutions; the offspring candidate solutions are evaluated
by task-related performance indicators to obtain their fitness
values (a.k.a. objective values); the offspring candidate solu-
tions are merged with the ones in the current population to
be selected for the next iteration (a.k.a generation). After a
number of generations as above, ideally, an EC algorithm will
end up with a population of candidate solutions approximating
the global optima of the optimization problems as given.

The optimization problems in RL tasks often involve com-
plex characteristics, while EC has been found to be a powerful
tool for dealing with them [17]. On the one hand, EC algo-
rithms require no gradient information and is widely applicable
to problems without explicit objective functions by quality
diversity (QD) [37] or novelty search (NS) [38]. On the other
hand, thanks to the population-based nature, EC algorithms
are inherently robust to dynamic changes that widely exist
in real-world applications of RL (e.g., sim-to-real transfer in
robot control [39]).

As an emerging research direction of RL, EvoRL is exactly
dedicated to meeting the challenges of various key research
problems in RL research by dealing the complex optimization
problems as involved, including but not limited to policy
search [40], reward shaping [41], exploration [13], hyperpa-
rameter optimization [12], meta-RL [42], multi-objective RL
[43], etc.

TABLE I
SUMMARY OF LAMARCKIAN AND THREE REPRESENTATIVE DISTRIBUTED
REINFORCEMENT LEARNING FRAMEWORKS OR PLATFORMS.

Frameworks Single ~ Multi- Tailored EvoRL Asynchronous
/Platforms Agent Agent Framework/Workflow ~ MDP Interface
TLeague [44] v v X X
Acme [45] v v X X
RLIib [21] v v X X
Lamarckian v v v v

C. RL Platforms and Frameworks

Since an RL agent is trained on a large number of samples
generated by interacting with its environment, the training

speed is highly related to the sampling efficiency. Hence,
the sampling efficiency is an important indicator to measure
RL frameworks or platforms [21], [45]. This motivates the
distributed framework to sample in parallel, where each of
the multiple actors interacts with its environment indepen-
dently. Except for the sampling efficiency, the sample stal-
eness reflecting the policy-lag is another essential indicator
[11]. To keep learners and actors as consistent as possible,
various synchronous methods are employed in state-of-the-art
distributed frameworks and platforms. Specially, RLIib uses
the synchronous data broadcasting where the learner stops
policy optimization when sending data to actors [21]. Acme
applies the data storage system Reverb and its rate limiter
to control the policy-lag, where the rate limiter will block
faster processes until slower processes catch up [45]. However,
since both RLIib and Acme may have blocking or waiting
processes for synchronization, they are low-efficient in large-
scale scenarios.

From the engineering perspective, most existing reinforce-
ment learning platforms or frameworks tend to scale at long-
running program replicas for distributed execution [18], [19],
[20], [46], [45], thus causing difficulties in generalizing to
complex architectures. In contrast, RLIlib scales well at short-
running tasks by a Ray-based hierarchical control model [21].
Despite the high scalability, however, RLIib suffers slow train-
ing efficiencies on large-scale distributed computing environ-
ments, and therefore RLIib cannot generalize well to complex
Al systems requiring highly parallel data transmission between
the learner and actors, such as OpenAl Five [11].

Among other state-of-the-art frameworks and platforms,
SEED RL [26] and TorchBeast [20] are two high-performance
scalable implementations of IMPALA [25]. SURREAL [47]
focuses on continuous control agents in robot manipulation
tasks by a distributed training framework. The recently pro-
posed frameworks, e.g., Arena [48], TLeague [44], and MALIib
[49], target at multi-agent reinforcement learning.

Despite the various platforms or frameworks as introduced
above, none of them is highly parallel or tailored for evolution-
ary reinforcement learning, particularly, facing the applications
of asynchronous commercial games. TABLE II summarizes
the main features of Lamarckian, in comparison with several
representative RL platforms or frameworks from four aspects.

D. Discussions

From the perspective of engineering designs, an asyn-
chronous system has a non-blocking architecture where mul-
tiple operations can run concurrently without waiting others
to complete; a distributed system is a computing environment
where independent components run on different machines to
achieve a common goal. Hence, distributed RL and asyn-
chronous RL refer to engineering implementations of RL in
the system level.

On the contrary, EvoRL aims to adopt EC methods to deal
with the challenging issues for RL in the methodology level.
Nonetheless, considering the population-based property of
EvoRL, delicate asynchronous system designs are particularly
important for the high performance of EvoRL.

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

Therefore, we are motivated to improve efficiency for
EvoRL as well as conventional RL by adopting a series
of asynchronous system designs, including: asynchronous
distributed EvoRL workflow allowing several operations of
EvoRL to execute in different machines concurrently without
communication or information exchange, asynchronous sam-
pling allowing a learner to continue learning when sending
its policy to actors; asynchronous data broadcasting allowing
the simultaneous data transmission and reception mode based
on asynchronous sampling, and asynchronous MDP interfaces
compatible with asynchronous commercial games.

III. ASYNCHRONOUS DISTRIBUTED DESIGNS

To provide highly parallel and scalable implementations
of distributed evolutionary reinforcement learning algorithms,
Lamarckian is designed to be asynchronous distributed by con-
sidering four main aspects: the distributed EvoRL workflow in
Section III-A, the acceleration of distributed computing in Sec-
tion III-B, the asynchronous MDP interface in Section III-C,
and the object-oriented software architecture in Section III-D.

A. Distributed EvoRL Workflow

Asynchronized Evolution Procedure

,," Server 1
N %)
T > [P ion }——1-[Evaluation] T
Parent Agents ! ! Offspring Agents
Mating : Selection
Server N

i x))

E ([Pr:l]—N'[E ion] I
e 8y
Population

Fig. 1. Distributed workflow of EvoRL. In the Asynchronous Evolution
Procedure, each pair of candidate solutions (a.k.a parents) are distributed in an
independent server to conduct permutation and evaluation in an asynchronous
manner.

Existing RL platforms merely support very limited single-
objective EC algorithms such as PBT. However, On the one
hand, there are rich scenarios involving multiple (instead of
single) objectives to be optimized simultaneously in RL tasks;
on the other hand, EvoRL requires tailored workflow design
for general high-performance implementations.

Fig. 1 is the overview of the proposed distributed workflow
for EvoRL: first, a population of candidate solutions (x1, Xo,
..., Xv) is initialized; then, each candidate solution enters the
mating process to generate parent pairs; afterward, permutation
operations are performed on each pair of mated candidate
solutions to generate offspring candidate solution; finally,
the offspring candidate solution is evaluated by an evaluator
encapsulating configurable RL algorithms or other task-related
performance indicators.

Considering computational efficiencies, the evolution work-
flow is asynchronous on each step, i.e., permutation, training,
and evaluation. Particularly, after evaluation, each offspring
candidate solution is sent to the collector server independently.
Once the expected number of offspring candidates solutions

are obtained, a synchronized selection will be performed to
have the promising candidate solutions survive to the next
generation.

B. Acceleration of Distributed Computing

On top of the proposed distributed workflow, we further
improve the computing efficiency from two engineering per-
spectives.

Learner

Leaf
Nodes

Fig. 2. Asynchronous tree-shaped data broadcasting. First, all actors are
grouped by the machines where they are located. In the same machine (i.e.
each box), actors fetch data by high-performance communication. Then, the
learner sends data to relay nodes. Finally, each relay node sends data to its
connected leaf nodes.

1) Asynchronous Tree-shaped Data Broadcasting: It is
common in an RL algorithm to require estimating a term in the
form of E, . [f(7)], where each T = (sq, ag, s1,a1,-..,ST)
is a trajectory generated by carrying out the policy m. Since
the expectation is taken under the distribution induced by T,
it is expected for on-policy RL algorithms that the samples
used for training should be as up-to-date as possible to give
an unbiased estimate.

For large-scale on-policy RL, when a learner is associated
with a large number of actors, a learner policy is potentially
several updates ahead of an actor’s policy when an update
occurs, thus causing the policy-lag phenomenon. Since shorter
data broadcasting time will directly lead to a smaller policy-
lag for asynchronous broadcasting, we propose a tree-shaped
data broadcasting method shown in Fig. 2.

The tree-shaped architecture is built automatically and
implicitly by getting available computational resources. The
architecture is a Complete N-ary Tree with no more than
three layers for nodes of any scale. Hence, the out-degree
of each node is approximated by y/n (n is the number of
nodes). Each node represents a machine with multiple CPU
cores and/or GPUs. The GPU is given priority to the learner
for a large amount of model inference. In Fig. 2, we describe
the process of data broadcasting in three steps: first, all actors
are grouped by the machines where they are located, and
in the same machine, actors fetch data by high-performance
communication (e.g., Inter-Process Communication or Shared
Memory); then, the learner sends data to relay nodes; finally,
each relay node sends data to its connected leaf nodes.

With a flat layout, directly broadcasting to n nodes would
incur O(n) traffic, and the head node (usually the learner)
becomes a bandwidth bottleneck. In the worst case, it suffers
an O(n) delay until the data to be received by all nodes.
But with a tree-shaped structure, it faces only O(y/n) traffic,

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

Worker Node Worker Node

{ Worker ‘ ’ Worker }< ’ Worker ‘ ’ Worker ‘

Scheduler

1. @ray.remote
e Head Node
3. t =1 .
retm ’ Worker ‘ ’ Driver }‘ a
4. @ray.remote
5. def B(): b
6. return =2 Scheduler
7. @ray.remote)
8. def Add(a, b): Object Store @
g return=a+b
10. a=A.remote() Global Control a. Task execution.
11. b =B.remote()
12. c=Add.remote(a, b) Store (GCS)
13. print(ray.get(c)) # Output 3.

(a) Code rewriting by Ray.

b. Local resource management.
c. Distributed resource management.

Object Store ‘—@ Object Store

i

N Scheduler

d. Distributed Object transfer.
e. Storage & retrieval of large objects.
f. Dependencies fulfillment.

(b) A Ray cluster.

Fig. 3. (a) is an example of using Ray to rewrite the code that outputs the result of a + b. (b) is an example of a Ray cluster. The cluster architecture consists
of a head node and two worker nodes, where the head node has a global control store (GCS) managing the system metadata, and each node has its local
worker, scheduler, object store. The protocols between these components are presented in “a” to “f” in circles.

and the second-layer relay nodes can operate in parallel.
Consequently, this results in a much smaller O(y/n) delay.
The effectiveness of this improvement is demonstrated in the
experiment section.

2) Ray plus ZeroMQ: Ray is a distributed computing
framework for the easy scaling of Python programs, which
provides a simple and universal API and only requires mini-
mum modification to build distributed applications. An exam-
ple of using Ray to rewrite the code that outputs the result of
a + b is provided in Fig. 3a, where the functions execute as
parallel and remote tasks by using the ray.remote primitive.
The tasks can distribute in different nodes in a Ray cluster as
in Fig. 3b, where the Add() task executes in the head node, and
the A() and B() tasks execute in the worker nodes, respectively.
The diagram illustrates an example of the cluster architecture
and protocols in brief. The head node has a global control
store (GCS) managing the system metadata. Each node has
its local worker, scheduler, and object store. The protocols
between these components, as presented in “a” to “f” in the
subfigure, are mostly over the Remote Procedure Call (RPC)
framework of gRPC. The details of Ray can refer to the public
document.

Since the HTTP/2-based gRPC has large overhead, la-
tency and complexity of request/response chain in large-scale
scenarios, the communication efficiency is quite limited. In
contrast, ZeroMQ is a powerful messaging library featuring
high-throughput and low latency. Moreover, it is recognized
that ZeroMQ is faster and more stable than HTTP/2 in
communication. Thus ZeroMQ is employed as transports
in Ray to construct highly efficient distributed computing
framework for Lamarckian. Ray is used for creating and
managing remote objects (e.g., workers that collect trajectories
for training), and spawning processes correspondingly. The
underlying communication is through ZeroMQ sockets that
implement various messaging patterns, for example, Publish-
Subscription for broadcasting model weights and Push-Pull for
distributing rollout tasks. Benefiting from ZeroMQ, the large
object transfer between worker nodes is enabled to support
data transfer between relay nodes and leaf nodes in the tree-
shaped data broadcasting, as demonstrated by “d” in Fig. 3b.

C. Asynchronous MDP Interface

To achieve high performance, flexible assembly, and scal-
ability, Lamarckian adopts the asynchronous MDP interface
with highly decoupled properties.

1. states = env.reset()
2. while True:
3. actions = [agent(state) for state, agent in zip(states, agents)]
4. states, rewards, done, info = env.step(actions)
5 if done:
6. break
(a) Synchronous MDP interface of Gym.
1. async def train(controller, agent):
2. state = controller.get_state()
3. rewards = []
4. while True:
58 script = agent(*state['inputs'])
6. for action in script:
7. exp = await controller(discrete=action)
8. state = controller.get_state()
9. reward = controller.get_reward|()
10. rewards.append(reward)
11. if exp['done']:
112, break
13. return rewards

14. async def evaluate(controller, agent):

15. state = controller.get_state()

16. with torch.no_grad|():

H78 while True:

18. script = agent(*state['inputs'])

19. for action in script:

20. exp = await controller(discrete=action)
21. state = controller.get_state()

22. if exp['done']:

23. break

24. mdp = MDP()

25. battle = mdp.reset(0, 1) # A battle with double agents(id=0, 1).

26. with contextlib.closing(battle):

27. loop = asyncio.get_event_loop()

28. rewards = loop.run_until_complete(asyncio.gather(
train(battle.controllers[0], agent0), # Create training Coroutine.
evaluate(battle.controllers[1], agentl), # Create sparring Coroutine.
*battle.ticks

))[0]

(b) Asynchronous MDP interface of Lamarckian.

Fig. 4. During the interaction between the environment and agents: the syn-
chronous MDP interface (a) is highly coupled, thus having poor compatibility
with asynchronous commercial games; in contrast, the asynchronous MDP
interface (b) decouples the agents with different functions, using Coroutine-
based controllers to control agents asynchronously.

https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

£¢ Evaluator Controller
+ initialization() + describe() + get_state()
+ evaluation() : gl/galalljlztee(()) + get_reward()

I |

([| N (| N DP
PBT GA ES Gradient-based RL

+ explore()| |+ mating() i Methods E----- _“>+ reset()

+ exploit() + crossover() * variation() : atsyn(c): step(action)

...... + mutation() jX stop

ey CMA-ES PPO IMPALA Gym Gfootball

Gradient-free

Methods

Fig. 5. The object-oriented software architecture of Lamarckian: EC module provides a general interface for EC algorithms; Evaluator module provides an
unified abstract interface for EC module and RL module; MDP module provides an asynchronous interface that decouples the agents with different functions,

using Coroutine-based controllers to control agents asynchronously.

Most existing MDP interfaces are based on the procedure-
oriented OpenAl Gym, where a code example is given in
(Fig. 4a). The Gym-based MDP interfaces are synchronous in
terms of two aspects: 1) the environment requires all generated
actions from all agents before it moves a step (line 3); 2)
the environment simultaneously returns states, rewards, and
other information of all agents until the agents perform all
actions (line 4). Despite their simple implementations, such
Gym-based MDP interfaces suffer from three main limitations:

e poor compatibility with asynchronous commercial game
environments;

« difficulties in implementing some specific RL techniques
such as data skipping technique [50] and scripted actions
[11];

« computational redundancies caused by close couplings.
To address the above limitations, we have designed an object-
oriented, highly decoupled and asynchronous MDP interface
(Fig. 4b). The proposed MDP interface is somehow similar to
OpenAl Gym, but it discriminates training agents and sparring
agents by decoupling (line 28), where the training agent and
the sparring agent can be respectively implemented in two
functions (i.e., the train function and the evaluate function)
according to their requirements (e.g., whether they need to
return rewards or not). One can define multiple controllers
for an MDP, where each controller controls an agent by a
Coroutine asynchronously. In contrast with Thread, Coroutine
is more efficient since it involves no scheduling overhead or
synchronization overhead on the level of operating systems.

Meanwhile, the independence and asynchrony of the pro-
posed MDP interface enable easy implementations of some
specific RL techniques such as scripted actions (lines 5-

7 and 18-20). Moreover, the proposed MDP interface well
supports multiple inputs of states (lines 5 and 18), multiple
types of actions (e.g., discrete or continuous actions, lines 7
and 20), and multi-head value estimation [51]. Consequently,
each agent can independently focus on its programming and
execution without considering others.

We demonstrate how to design an asynchronous MDP
by users. First, users should determine the types of agents
according to their actions and returned information. Second,
each type of agent is implemented in a separate function
using Python Coroutine Syntax (e.g., async; await; asyn-
cio.get_event_loop; asyncio.gather). Specially, as exemplified
by the Gym codes in Fig. 4a, lines 3 and 4 are extended to line
2-10 in the train function or line 15-21 in the evaluate func-
tion. Third, in the main function (line 28), a training agent and
a sparring agent are initialized and executed asynchronously,
and then only the training agent returns the rewards.

D. Object-Oriented Software Architecture

As shown in Fig. 5 by UML [52], Lamarckian is designed
on the basis of an object-oriented software architecture com-
prehensively covering key modules involved in EvoRL. In the
subsection, we will introduce each module one by one.

Evaluator module provides an unified abstract interface for
EC module and RL module, which includes three general
methods: describe(), initialize(), and evaluate(). Specifi-
cally, describe() returns the coding of a candidate solution
(e.g., integer coding, real coding, and neural network cod-
ing); initialize() initializes a candidate solution with specific
coding schemes; evaluate() evaluates the performance of
a candidate solution on specific objective/cost function(s).

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

Essentially, Evaluator provides a bridge between EC module
and RL module such that gradient-free EC algorithms and
gradient-based RL algorithms can work collaboratively in RL
tasks.

EC module includes two general methods: initialization ()
and evaluation(), which provides a general interface for
EC algorithms (e.g., PBT, GA, ES, etc.). Specifically,
initialization() initializes a population of candidate solutions
with corresponding coded decision variables®; evaluation()
evaluates the performance of a population of candidate solu-
tions by an instantiated evaluator.

PBT module includes two general methods explore() and
exploit(). Implementation of any PBT-like algorithm falls into
this module.

GA module includes three general methods mating(),
crossover() and mutation(). Implementation of any GA
based algorithm (e.g., NSGA-II [32]) falls into this module.

ES module includes a general method variation(). Imple-
mentation of any ES based algorithm (e.g., CMA-ES [53])
falls into this module.

RL module provides a general interface and primitives for
state-of-the-art RL algorithms, such as A3C, PPO and DQN.

MDP module provides an asynchronous interface. Each
MDP can include multiple controllers, where each controller
controls an agent. Any game environment can adapt to this
asynchronous MDP interface by modifications.

Lamarckian can independently support EC algorithms by
providing shared modules (e.g., GA and ES) and functions
(e.g., initialization, evaluation, crossover and mutation). Thus,
users can easily implement their EC algorithms by inheriting
and reusing the existing modules and functions. To efficiently
test the accuracy of implementing EC algorithms, users can
also use the existing numerical optimization problems or
implement their own problems by inheriting the Evaluator
module. In addition, benefiting from the decoupled and object-
oriented software architecture of the platform, users can
flexibly apply different EC algorithms to different tasks by
configuration commands or files.

IV. BENCHMARK EXPERIMENTS

In this section, we conduct benchmark experiments to assess
the performance of Lamarckian on three benchmark games as
shown in Fig. 6 in Section IV-B to Section IV-E.

Fig. 6. Benchmark games. From left to right: Pendulum, Pong, Google
football.

3In the context of RL, a decision variable generally refers to a weight or
hyperparameter.

A. Experimental Design

To assess the performance of Lamarckian, we conduct
benchmark experiments against the state-of-the-art library
RLIib across different cluster scales and environments. For
some of the commonly used environments in RL research
(e.g., OpenAl gym) that provide only synchronous interfaces,
we wrap them with the proposed asynchronous interface to
be compatible with Lamarckian. Note that for the inherently
synchronous environments, this modification merely affects
sampling efficiency as the sampled trajectories would remain
the same for the same action sequence. To sufficiently demon-
strate the efficiency of gathering and broadcasting, we adopt
an asynchronous variant of PPO built on top of an architecture
similar to that of IMPALA with the proposed Ray+ZeroMQ
and tree-shaped broadcasting method. All results are averaged
over 5 independent runs of the corresponding experiments.

For small-scale experiments (10 to 160 CPU cores), we train
agents to play Atari Pendulum and the image input version
of Pong by PPO. For large-scale experiments (2000 to 6000
CPU cores), we train agents to play 1) Google football, a
challenging video game based on physics simulation with
complex interactions and a sparse reward by PPO, and 2)
vector-input version of Pong by using the PBT to adjust the
learning rate and loss ratio of PPO.

In all experiments except Pendulum, only a single GPU
is used in the learner process. The hyperparameters used in
the experiments and the model implementations are listed in
TABLE III. All experiments were carried out on a cluster
where each computation node has 40 Intel Xeon Gold 6148
CPU @2.4GHz. The learner always uses an NVIDIA Tesla
A100-40GB GPU.

TABLE III
HYPERPARAMETER SETTING AND MODEL IMPLEMENTATION FOR ALL
BENCHMARK INSTANCES. FOR PPO, WE USE THE NORMALIZED
ADVANTAGE ESTIMATE AND NO KL PENALTY. INTERVALS INDICATE THE
SEARCH RANGES OF THE CORRESPONDING PARAMETER IN PBT. THE
CRITIC NETWORKS ARE BUILT ON TOP OF THE POLICY NETWORKS,
SHARING THE BOTTOM PART. LEAKYRELU ACTIVATION IS APPLIED TO

EACH LAYER.
PPO

Benchmarks Discount Clip Learning rate
Pendulum 0.99 0.2 0.01
Image Pong 0.99 0.2 0.01
Vector Pong 0.99 0.2 (0, 0.1]
Gfootball 0.993 0.2 0.0005
Benchmarks ~ Batch size Batch reuse Loss weight (policy, critic, entropy)
Pendulum 8192 1 1, 0.5, 0.01
Image Pong 8192 1 1, 0.5, 0.01
Vector Pong 8192 1 1, (0, 1], 0.01
Gfootball 32768 2 1, 0.5, 0.01
Benchmarks ~ Policy models (hidden layers) Critic models (hidden layers)
Pendulum FC(256, 128) FC(256, 128, 128, 64)
Image Pong (ConvK4S2) x 4, FC(256) (ConvK4S2) x 4, FC(256)
Vector Pong FC(256, 128) FC(256, 128)
Gfootball FC(512, 256, 128) FC(512, 256, 128, 128, 64)

B. Sampling Efficiency
Sampling efficiency is measured by the average number of
frames consumed per second (fps) during the training and

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

x 10000

o L, N W A O O

010 cores
020 cores

o
+

D040 cores
@80 cores
160 cores

RLIib RLIib

Lamarckian Lamarckian

(a) Pendulum-CPU (b) Pong-GPU

g6 20
g5
@2000 cores

= 15
£ 4 @
8 4
&3 & 10 4000 cores
5 =
Q. 2 (]
@
g ST B 6000 cores
&1
w

0 0

Lamarckian RLIib Lamarckian Lamarckian*

(c) Gfootball-GPU (d) Gfootball-GPU

Fig. 7. Sampling efficiency of Lamarckian scales nearly linearly both on
small-scale (10 to 160 CPU cores) and large-scale (2000 to 6000 CPU cores)
training instances, which is only true for RLIib in (a) and (c). Besides, the
staleness metric of Lamarckian* in (d) sharply increases as the number of
CPUs grows.

TABLE IV
THE AVERAGE CPU UTILIZATION OF LAMARCKIAN AND RLLIB WHEN
RUNNING PPO ON IMAGE PONG.

< CPU cores
Platforms 10 20 40 80 160
Lamarckian 322% 621% 96.8% 972% 69.4%
RLIib 107% 212% 239% 15% 6.5%

evaluation processes. Higher sampling efficiency leads to a
faster training speed of agents generally. As shown in Fig. 7,
Lamarckian has near-linear scalability in all cases, which is
only true for RLIib in Fig. 7a and Fig. 7c. In detail, on the
Pendulum game, Lamarckian achieves 10k samples per second
on 10 cores. Compared with the sampling efficiency with the
minimum number of cores, Lamarckian reaches about 2, 4,
8, and 15 times sampling efficiency on 20, 40, 80, and 160
cores, respectively. On the Pong game, Lamarckian achieves
similar acceleration on these cores. Moreover, on the complex
Gfootball game, Lamarckian obtains about 17k samples per
second on 2000 cores, which becomes more advantageous as
the number of cores increases, reaching over 53k samples per
second on 6000 cores. The results show that even in the case
communicating on thousands of cores, Lamarckian can still
achieve near-linear scalability. In constrast, RLlib shows gen-
erally lower performance and degenerated in the experiment
on Image Pong, suspiciously due to its complex remote object
managing mechanism and limited communication efficiency.

The average CPU utilization of Lamarckian is much higher
than that of RLIib when running PPO on Image Pong in
TABLE IV. Specially, Lamarckian can achieve CPU utilization
of 96.8% and 97.2% with one machine and two machines,
respectively. However, the CPU utilization of both platforms
decreases with an increasing number of machines, further
indicating the potential improvement brought by Lamarckian.

C. Data Broadcasting Efficiency

Sample staleness, defined to measure the degree of policy-
lag, is calculated as the version difference between the policy
used to draw the samples and the policy being optimized. Note
that RLIib’s implementation of PPO employs synchronous
sampling (the learner stalls to wait for new samples), thus
always having a reference staleness of one. Fractional values
are possible since PPO takes more than one gradient step on
each batch of data. In an asynchronous sampling scheme, the
staleness is mainly determined by the latencies of broadcasting
updated policies and gathering samples.

To verify the efficiency of the proposed tree-shaped data
broadcasting, we conduct ablation experiments by comparing
it against asynchronous broadcasting with a flat layout as
discussed in Section III-B1, termed Lamarckian®*. Moreover,
we study how the staleness influences the agents’ learning
efficiency, as measured by the performance achieved given
the same amount of samples.

As shown in Fig. 7d, the staleness of Lamarckian* sharply
increases as the number of CPUs grows, which matches our
expectation on its scaling behavior. And the out-of-date sam-
ples also lead to worse performance, which can be observed
from Fig. 8. Besides, although the staleness of Lamarckian is
larger when on 4000 cores or more, the performance of trained
agents is consistently better. Therefore, we can conclude that
the proposed tree-shaped broadcasting can effectively reduce
the side effects brought by the policy-lag in asynchronous
learning schemes.

D. Performance and Training Speed

We investigate the agents’ performance and the training
speed of Lamarckian and RLIib by the learning curves in fixed
numbers of environment frames (i.e., 150M frames for PPO on
Gfootball, and 1G frames for PBT+PPO on Pong) on the three
large-scale instances. Fig. 8 and Fig. 9 provide the learning
curves from two perspectives, with total frames and time as
the horizontal axes respectively. The two subfigures in each
column represent the same instance of CPU cores.

As shown in the two figures, Lamarckian achieves com-
petitive scores on both PPO for Gfootball and PBT+PPO for
Pong. Moreover, the training speed of Lamarckian is much
faster than that of RLIib in both games: i) in Fig. 8, with a
larger number of CPU cores, Lamarckian achieves as twice
fast training speed as RLIib on 6000 cores; ii) in Fig. 9,
Lamarckian is 13 times faster than RLIlib on 6000 cores.

However, when consuming the same frames, RLIib con-
verges faster than Lamarckian on Pong with 4000 and 6000
cores in the first row of Fig. 9, but the observation is not
true in Fig. 8. The different observations of the performance
and training speed from the two figures are highly related to
the difficulties of two tasks, i.e., tasks of different difficulties
have different sensitivities to the abundance of samples. In
the experiments, the task of Gfootball, with sparse rewards,
is a much more challenging RL task than the task of Pong.
Consequently, Lamarckian achieved significantly faster con-
vergence (as well as higher scores) than RLIib on Gfootball
due to the abundant samples generated by the asynchronous

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR 9

1 1
e
lul 0 |
-] 0 Wj] 0 [
Pt S e
® l'» = S
[>] " 1> Q -l
@ MM"’W M n -l R
N et VL‘ y .
""“.'{N v Lamarckian 1 M —— Lamarckian) y —— Lamarckian
2 e -2 '
! —— RLIib . I —— RLIib —— RLIib
Lamarckian* [Lamarckian* Lamarckian*
0 30M 60M 90M 120M 150M 0 30M 60M 90M 120M 150M 0 30M 60M 90M 120M 150M
Frames Frames Frames
1
1 1
0
A

r

p—

Score
Score
3
‘5‘-_‘
Score

(a) 2000 cores

(b) 4000 cores

,-M*n’»w !
ar® u Tk
2 "'IWM —— Lamarckian , W " —— Lamarckian 2 fﬂ —— Lamarckian
[—— RLIib “l | —— RLIib —— RLIib
Lamarckian* Lamarckian* Lamarckian*
0 1 2 3 4 0.5 1.0 L5 2.0 0.5 1.0 1.5
Time(h) Time(h) Time(h)

(c) 6000 cores

Fig. 8. The agents’ performance and the training speed of Lamarckian, RLIib and Lamarckian* by the learning curves in 150M environment frames when
running PPO on Gfootball.

15 15 15
10 10 10
5 5 5
= = =
S 0 S o S 0
wn W wn
5 -5 -5
-10 —— Lamarckian -10 —— Lamarckian -10 —— Lamarckian
—— RLIib —— RLIib —— RLIib
-15 -15 -15
0 200M 400M 600M 800M 1G 0 200M 400M 600M 800M 1G 0 200M 400M 600M 800M 1G
Frames Frames Frames
15 A A~ 15 15
10 10 10
5 5 5
2 2 2
S o S o S0
7] 7] 7]
5 -5 -5
-10 —— Lamarckian -10 —— Lamarckian -10 —— Lamarckian
—— RLIib —— RLIib —— RLIib
-15 -15 -15
0 05 1.0 1.5 20 2.5 3.0 35 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5
Time(h) Time(h) Time(h)
(a) 2000 cores (b) 4000 cores (c) 6000 cores

Fig. 9. The agents’ performance and the training speed of Lamarckian and RLIib by the learning curves in 1G environment frames when running PBT+PPO
on Pong.

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

sampling, while the limited samples generated by the syn-
chronous sampling in RLIib seem good enough for the task of
Pong. Besides, as shown in Fig. 8, RLIib stagnates on 2000
cores while converging better on 4000 and 6000 cores reflects.
It can be attributed to the fact that the inefficient and unstable
communication mechanism of RLIib can lead to its unstable
performance on large-scale CPU cores.

E. Discussion

In asynchronous RL, higher sampling efficiency does not
necessarily lead to faster convergence or higher performance
in frames, but staleness plays the key role. In Lamarckian,
the staleness of samples increases as the transfer of sam-
ples takes longer; by contrast, RLlib adopts a synchronous
learning mechanism where the staleness is fixed no matter
how long it takes to transfer the samples. Hence, despite
that Lamarckian has significantly higher sampling efficiency,
its staleness also becomes larger as the number of machines
increases. Nonetheless, the proposed tree-shaped broadcasting
is able to effectively reduce the side effects brought by
the policy-lag and the communication bottleneck of learn-
ers in the asynchronous learning procedure, thus leading to
competitive performance (i.e., scores) with a faster training
speed. Furthermore, the distributed EvoRL workflow can also
accelerate the training speed for EvoRL methods. In common
practice, staleness is often fixed by synchronous sampling,
while maintaining stable staleness is particularly crucial and
challenging in asynchronous RL.

V. USE CASES

In this section, we provide two use cases of Lamarckian:
first, we provide a use case of how to generate behavior-
diverse game Al by implementing a state-of-the-art algorithm
in Lamarckian; then, we provide a use case of how Lamarckian
is applied to game balancing tests for an asynchronous RTS
game.

A. Generating Behavior-Diverse Game Al

In commercial games, game Al entertains users via human-
like interactions. For high-quality game Al, diversity of behav-
iors is among the most important criteria to meet. However,
generating behavior-diverse game Al often involves rich do-
main knowledge and exhaustive human labors. For example,
the behavior tree [54] is a rule-based method, which requires
abundant expert knowledge and labor costs in designing rules.
In contrast, the EC-based methods can generate strong game
Al beyond human common sense by requiring little prior
human knowledge [55], [56], [15].

The EMOGI [15] is a recently proposed EvoRL approach
for generating diverse behaviors for game Al with little prior
knowledge. The basic idea of EMOGTI is to guide the Al agent
to learn towards desired behaviors automatically by tailoring
a reward function with multiple objectives, where a multi-
objective optimization algorithm is adopted to obtain policies
trading-off between the multiple objectives.

We implement EMOGI in Lamarckian and show a use case
on the Atari Pong game. Specifically, apart from maximizing

the win-rate/score, a Pong agent is designed by considering
active or lazy behavior styles according to its willingness to
make movements during a game epoch. The two styles are
formulated as a reward involving two objectives:

r(s,a) = [fi(s,a), fa(s, a)]", @

with
fi(s,a) = win(s) + activeness(a) 3
{ f2(s,a) = win(s) + laziness(a) ’)

and
activeness(a) = wy - move(a) 4
{ laziness(a) = ws - (1 — move(a)) ’ “)

where f1(s,a) and f2(s,a) are the activeness-related objective
and the laziness-related objective respectively; win(s) returns
1 iff s is a winning state, otherwise 0; move(a) returns 7
iff there is any movement in action a, otherwise 0, with T’
denoting the total number of actions in an epoch; w; and
wy are weight parameters set by users. Intuitively, the reward
as formulated above encourages an agent to either play in
an active manner or, conversely, try to win the game with a

minimal number of movements.

..
0.9 D)

0.875

@
% 0.870 5
2 ° @
2 =
308 0.865 3
2 S
b3 <
<
< 0.7 0.860 g
. > 5
o z
0 . 0.855
: Lazy Agent .~
0.0 0.1 0.2 0.3 0.4
Laziness

Fig. 10. The Pareto front of activeness vs. laziness values of the Al agents
obtained by EMOGI using Lamarckian on Atari Pong game. Colors indicate
the average normalized scores achieved by each agent.

As evidenced in Fig. 10, the Al agents formed different play
styles in terms of activeness/laziness, while achieving similar
normalized scores (defined as Score“”*Ziﬁiti:gswre"’“ €
[0,1]). On the one hand, the agents with relatively lower
competitiveness (i.e. those on the two corners) have survived
due to their distinguished behavior styles — either too active or
too lazy. On the other hand, the agents with relatively higher
competitiveness ((i.e. those in the center) have also survived
despite that the behavior styles are neutral. In practice, such
wide spectrum of behavior-diverse game AI would enable
richer user experience.

B. Game Balancing in RTS Game

In commercial games, user satisfaction is always influenced
by game balancing [57]. In an imbalanced game, there maybe
exist an unbeatable strategy or a role getting the player frus-
trated. The game designers aim to develop a balanced game
by weakening the most imbalanced strategies or roles obtained

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

(a) Fighting arena

=50

=55

—60

—65

=70

=75

—80

(b) Final solution set

Fig. 11. (a) is a typical hero-led fighting arena of The Lord of the Rings: Rise to War. (b) is the final solution set obtained by Lamarckian to a three-objective
optimization problem in the game balancing test. f1 is the battle damage difference, fo is the remaining economic resources multiples, and f3 is the strength

of the weakest team.

by the game balancing test. Traditionally, the enumeration
methods or reinforcement methods have been adopted to the
problem in industry. However, they are low-efficient since only
one solution is obtained in each run. In contrast, the EC-
based methods are more efficient by obtaining a set of diverse
solutions in one run.

From the optimization point of view, the game balancing
test is a non-differentiable optimization problem that involves
multiple objectives to be considered simultaneously. We apply
Lamarckian to a three-objective optimization problem in the
game balancing test for the asynchronous commercial RTS
game, The Lord of the Rings: Rise to War, aiming to obtain
the most imbalanced and strongest lineups. First, we encode
a lineup as the decision variables of a candidate solution,
including heroes (51 types) and soldiers (two to three types);
each hero is armed with four types of skills and 79 types of
equipment. Thus, the search space is up to 50,000 units. A
typical hero-led fighting arena is shown Fig. 11a. Second, we
formulate the game balancing test problem as a multi-objective
combinatorial optimization (maximization) problem associated
with three objectives: i) the battle damage difference (f;)
calculated by the remaining strength difference between the
strongest team and the weakest team in a lineup, ii) the
remaining economic resources multiples (f2) calculated by the
remaining economic resources of the strongest team divided by
those of the weakest team, and iii) the strength of the weakest
team (f3) to improve the overall strength of a lineup. Third,
we use crossover and mutation operators of discrete variables
similar to those in the classic Traveling Salesman Problem
to ensure the validity of offspring and the non-repetitiveness
of teams. Then, to evaluate a candidate solution, all teams
in the solution should play against each other to obtain the
first two objectives, and then battle with the baseline lineups
to determine the strength of the weakest team. Finally, we
adopt NSGA-II, a classic EC algorithm for multi-objective
optimization, as the optimizer to iteratively perform non-
dominated sorting on a population of candidate solutions

evolving towards the Pareto front. The final population is an
approximation to the Pareto optimal set. The solutions in the
Pareto optimal set mean that there is no solution better than
the other solutions on all the objectives and they are Pareto
non-dominated.

As shown in Fig. 11b, a solution with a remaining economic
resources multiple larger than two (i.e., fo > 2) is considered
imbalanced. Apart from the solution set itself, we also obtain
some interesting observations. For example, the outlier solu-
tion at the left corner indicates the strong conflicts between f;
and f3, and f; and f3, respectively. It means that a set of over-
all very strong lineup leads to less battle damage differences
and remaining economic resources multiples. Eventually, the
game designers will select the solutions with overall strong
lineups (i.e., the red points) and modify the game parameters
to weaken these lineups. The above testing and modification
processes will loop until the game is balanced. The game
balancing test of each loop only takes about ten minutes by a
tailored game simulator, which is acceptable in the industry.

VI. CONCLUSION

This paper introduces Lamarckian — an open-source high-
performance scalable platform tailored for evolutionary rein-
forcement learning. To meet the requirements of applications
in large-scale distributed computing environments (e.g. the
asynchronous commercial game environments), Lamarckian
adopts a tree-shaped data broadcasting method as well as the
asynchronous Coroutine-based MDP interface. To accelerate
the training of agents, Lamarckian couples Ray with ZeroMQ
to take advantage of both. From the software engineering
perspective, Lamarckian also provides good flexibility and
extensibility by well decoupled objective-oriented designs. The
performance of Lamarckian has been evaluated on large-scale
benchmark tests with up to 6000 CPU cores, in comparison
with the state-of-the-art RLIib. Additionally, we provide two
use cases of Lamarckian. In the first use case, we apply Lamar-
ckian to generating behavior-diverse game Al by implementing

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

a recently proposed EvoRL algorithm. In the second use case,
we apply Lamarckian to multi-objective game balancing test
for an asynchronous commercial real-time strategy game.

In order to match the asynchronous MDP interface in
Lamarckian, users need to transfer the original synchronous
MDP interfaces into asynchronous ones by following unified
workflow. However, it is worthy of such additional implemen-
tation labor as it brings substantial performance improvement.
Further, the ready-to-use modules in Larmackian also brings
extra benefits to users.

In summary, Lamarckian is a high-performance, easy-to-
use, and scalable platform for researchers and engineers to
take instant adventures.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski

et al., “Human-level control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” The International Conference on Learning Representations
(ICLR), 2016.

[4] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,” in
Advances in Neural Information Processing Systems (NeurlPS), 2020.

[5] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-

gamani, and P. Pérez, “Deep reinforcement learning for autonomous

driving: A survey,” IEEE Transactions on Intelligent Transportation

Systems, 2021.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-

man, J. Tang, and W. Zaremba, “OpenAl Gym,” arXiv preprint

arXiv:1606.01540, 2016.

[71 M. Wydmuch, M. Kempka, and W. Jaskowski, “Vizdoom competitions:
Playing doom from pixels,” IEEE Transactions on Games, vol. 11, no. 3,
pp. 248-259, 2019.

[8] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright,
H. Kiittler, A. Lefrancq, S. Green, V. Valdés, A. Sadik et al., “Deepmind
lab,” arXiv preprint arXiv:1612.03801, 2016.

[9] S. Xu, H. Kuang, Z. Zhi, R. Hu, Y. Liu, and H. Sun, “Macro action
selection with deep reinforcement learning in starcraft,” in Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 15, no. 1, 2019, pp. 94-99.

[10] R.-Z. Liu, H. Guo, X. Ji, Y. Yu, Z.-J. Pang, Z. Xiao, Y. Wu, and T. Lu,
“Efficient reinforcement learning for starcraft by abstract forward models
and transfer learning,” IEEE Transactions on Games, 2021.

[11] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Degbiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse ef al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[12] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever,
A. G. Castaneda, C. Beattie, N. C. Rabinowitz, A. S. Morcos,
A. Ruderman et al., “Human-level performance in 3D multiplayer
games with population-based reinforcement learning,” Science, vol.
364, no. 6443, pp. 859-865, 2019. [Online]. Available: http:
//dx.doi.org/10.1126/science.aau6249

[13] S. Khadka and K. Tumer, “Evolution-guided policy gradient in rein-
forcement learning,” in International Conference on Neural Information
Processing Systems (NeurIPS), 2018.

[14] S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu,
and K. Tumer, “Collaborative evolutionary reinforcement learning,”
International Conference on Machine Learning (ICML), 2019.

[15] R. Shen, Y. Zheng, J. Hao, Z. Meng, Y. Chen, C. Fan, and Y. Liu, “Gen-
erating behavior-diverse game Als with evolutionary multi-objective
deep reinforcement learning,” in International Joint Conference on
Artificial Intelligence (IJCAI), 2020.

[2

—

[6

=

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

[31]

(32]

[33]

[34]

Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772-784.

H. Qian and Y. Yu, “Derivative-free reinforcement learning: A review,”
Frontiers of Computer Science, 2021.

P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G.
Bellemare, “Dopamine: A research framework for deep reinforcement
learning,” CoRR, vol. abs/1812.06110, 2018. [Online]. Available:
http://arxiv.org/abs/1812.06110

D. Hafner, J. Davidson, and V. Vanhoucke, “Tensorflow agents:
Efficient batched reinforcement learning in tensorflow,” CoRR, vol.
abs/1709.02878, 2017. [Online]. Available: http:/arxiv.org/abs/1709.
02878

H. Kiittler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivakumar,
T. Rocktéschel, and E. Grefenstette, “Torchbeast: A pytorch platform
for distributed RL,” CoRR, vol. abs/1910.03552, 2019. [Online].
Available: http://arxiv.org/abs/1910.03552

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and 1. Stoica, “RLIlib: Abstractions
for distributed reinforcement learning,” in International Conference
on Machine Learning (ICML), 2018. [Online]. Available: http:
/lproceedings.mlr.press/v80/liang18b.html

P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker,
“Empirical evaluation methods for multiobjective reinforcement learning
algorithms,” Machine Learning, vol. 84, pp. 51-80, 2010.

A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher,
“Dynamic weights in multi-objective deep reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2019, pp. 11—
20.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “IMPALA: scalable dis-
tributed deep-rl with importance weighted actor-learner architectures,”
in International Conference on Machine Learning (ICML), 2018.

L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, and M. Michalski,
“SEED RL: Scalable and efficient deep-rl with accelerated central
inference,” in International Conference on Learning Representations
(ICLR), 2020. [Online]. Available: https://openreview.net/forum?id=
rkgvXIrKwH

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. L. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging Al applications,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 561—
577. [Online]. Available: https://www.usenix.org/conference/osdil8/
presentation/moritz

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning (ICML), 2016. [Online]. Available: http://proceedings.mlr.
press/v48/mnihal6.html

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

K. Kurach, A. Raichuk, P. Staiczyk, M. Zajac, O. Bachem, L. Espeholt,
C. Riquelme, D. Vincent, M. Michalski, O. Bousquet et al., “Google
research football: A novel reinforcement learning environment,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2020.
H. Ishibuchi, Y. Nojima, and T. Doi, “Comparison between single-
objective and multi-objective genetic algorithms: Performance compar-
ison and performance measures,” in IEEE Congress on Evolutionary
Computation, Vancouver, BC, Canada, July 2006, pp. 3959-3966.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-IL,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test prob-
lems for evolutionary multi-objective optimization,” in Evolutionary
Multiobjective Optimization, ser. Advanced Information and Knowledge
Processing. Springer, 2005, pp. 105-145.

E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary Computation,
vol. 8, no. 2, pp. 173-195, June 2000.

http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aau6249
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1709.02878
http://arxiv.org/abs/1709.02878
http://arxiv.org/abs/1910.03552
http://proceedings.mlr.press/v80/liang18b.html
http://proceedings.mlr.press/v80/liang18b.html
https://openreview.net/forum?id=rkgvXlrKwH
https://openreview.net/forum?id=rkgvXlrKwH
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

(351

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

(501

(511

[52]

[53]

[54]

M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan
et al., “Population based training of neural networks,” arXiv preprint
arXiv:1711.09846, 2017.

D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65-85, 1994.

J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A
new frontier for evolutionary computation,” Frontiers in Robotics and
Al vol. 3, p. 40, 2016. [Online]. Available: https://www.frontiersin.org/
article/10.3389/frobt.2016.00040

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary computation, vol. 19, no. 2,
pp. 189-223, 2011.

W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), 2020, pp. 737-744.

A. Pourchot and O. Sigaud, “Cem-rl: Combining evolutionary
and gradient-based methods for policy search,” arXiv preprint
arXiv:1810.01222, 2018.

S. Liu, G. Lever, J. Merel, S. Tunyasuvunakool, N. Heess, and T. Grae-
pel, “Emergent coordination through competition,” in International
Conference on Learning Representations (ICLR), 2019.

J. D. Co-Reyes, Y. Miao, D. Peng, E. Real, Q. V. Le, S. Levine,
H. Lee, and A. Faust, “Evolving reinforcement learning algorithms,” in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=0XXpJ40tjW

R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm
for multi-objective reinforcement learning and policy adaptation,”
in Advances in Neural Information Processing Systems (NeurlPS),
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 14610-
14 621. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
hash/4a46fbfca3f1465a27b210f4bdfe6ab3- Abstract.html

P. Sun, J. Xiong, L. Han, X. Sun, S. Li, J. Xu, M. Fang, and Z. Zhang,
“TLeague: A framework for competitive self-play based distributed
multi-agent reinforcement learning,” arXiv preprint arXiv:2011.12895,
2020.

M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, F. Behbahani,
T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang, K. Baumli er al.,
“Acme: A research framework for distributed reinforcement learning,”
arXiv preprint arXiv:2006.00979, 2020.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
International Conference on Machine Learning (ICML), 2016. [Online].
Available: http://arxiv.org/abs/1604.06778

L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa,
S. Savarese, and L. Fei-Fei, “SURREAL: Open-source reinforcement
learning framework and robot manipulation benchmark,” in Conference
on Robot Learning, 2018.

Y. Song, A. Wojcicki, T. Lukasiewicz, J. Wang, A. Aryan, Z. Xu,
M. Xu, Z. Ding, and L. Wu, “Arena: A general evaluation platform
and building toolkit for multi-agent intelligence,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020, pp.
7253-7260.

M. Zhou, Z. Wan, H. Wang, M. Wen, R. Wu, Y. Wen, Y. Yang, W. Zhang,
and J. Wang, “Malib: A parallel framework for population-based multi-
agent reinforcement learning,” arXiv preprint arXiv:2106.07551, 2021.
I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J. Chung, “Creating
pro-level Al for a real-time fighting game using deep reinforcement
learning,” IEEE Transactions on Games, 2021.

D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu,
F. Qiu, H. Yu, Y. Yin, B. Shi, L. Wang, T. Shi, Q. Fu, W. Yang, L. Huang,
and W. Liu, “Towards playing full moba games with deep reinforcement
learning,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/06d5ae105ealbeadd800bc96491876e9-Paper.pdf

N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins,
“Modeling software architectures in the unified modeling language,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 1, pp. 2-57, 2002.

N. Hansen, S. D. Miiller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary computation, vol. 11, no. 1,
pp. 1-18, 2003.

I. Millington and J. Funge, Artificial intelligence for games. CRC Press,
2018.

[55]

[56]

[57]

J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

A. Agapitos, J. Togelius, S. M. Lucas, J. Schmidhuber, and A. Konstan-
tinidis, “Generating diverse opponents with multiobjective evolution,”
in 2008 IEEE Symposium On Computational Intelligence and Games.
IEEE, 2008, pp. 135-142.

F. d. Mesentier Silva, R. Canaan, S. Lee, M. C. Fontaine, J. Togelius,
and A. K. Hoover, “Evolving the hearthstone meta,” in /EEE Conference
on Games (CoG), 2019.

Hui Bai received the B.Sc. and M.Sc. degrees
in software engineering from Xiangtan University,
Xiangtan, China, in 2014 and 2017 respectively.
She is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
China.

Her main research interests include evolutionary
algorithms and their applications to reinforcement
learning.

Ruimin Shen received the Ph.D. degree in applied
mathematics and M.Sc. degree in computer science
from Xiangtan University of China, in 2015 and
2012, respectively. He is currently the researcher of
the Game Al research team of NetEase Games Al
Lab, Guangzhou, China.

His research interests include evolutionary algo-
rithms, reinforcement learning and their applications
to online games.

Yue Lin received the M.Sc. degree in computer
science from Zhejiang University, Hangzhou, China
in 2013, and the B.Sc. degree in control science and
engineering from Zhejiang University, Hangzhou,
China in 2010. He is currently the director of
NetEase Games Al Lab, Guangzhou, China.

His research interests include computer vision,
data mining, reinforcement learning and their appli-
cations to online games.

Botian Xu received his bachelor’s degree in Com-
puter Science from Southern University of Science
and Technology. He is currently a researcher at
Institution of Interdisciplinary Information Science,
Tsinghua University.

His interests focus on deep reinforcement learning
and its applications.

https://www.frontiersin.org/article/10.3389/frobt.2016.00040
https://www.frontiersin.org/article/10.3389/frobt.2016.00040
https://openreview.net/forum?id=0XXpJ4OtjW
https://proceedings.neurips.cc/paper/2019/hash/4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html
http://arxiv.org/abs/1604.06778
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf

IEEE TRANSACTIONS ON GAMES, VOL. , NO. , MONTH YEAR

Ran Cheng (M’2016-SM’2021) received the B.Sc.
degree from Northeastern University, Shenyang,
China, in 2010, and the Ph.D. degree from the
University of Surrey, Guildford, U.K., in 2016. He
is currently an Associate Professor with the Depart-
ment of Computer Science and Engineering, South-
ern University of Science and Technology, China.

His research interests mainly fall into the inter-
disciplinary fields across evolutionary computation
“ and other major Al branches such as statistical

learning and deep learning, aiming to provide end-
to-end solutions to optimization/modeling problems in scientific research and
engineering applications.

He is a recipient of the 2019 IEEE Computational Intelligence Society
Outstanding Ph.D. Dissertation Award, the 2018 and 2021 IEEE TRANSAC-
TIONS ON EVOLUTIONARY COMPUTATION Outstanding Paper Awards,
and the 2020 IEEE Computational Intelligence Magazine Outstanding Paper
Award. He serves as Associate Editors of the IEEE TRANSACTIONS
ON EVOLUTIONARY COMPUTATION, the IEEE TRANSACTIONS ON
ARTIFICIAL INTELLIGENCE, and the IEEE TRANSACTIONS ON COG-
NITIVE AND DEVELOPMENTAL SYSTEMS. He is the Chair of IEEE
Computational Intelligence Society Shenzhen Chapter.

14

	I Introduction
	II Background and Related Work
	II-A RL and MDP
	II-B EC and EvoRL
	II-C RL Platforms and Frameworks
	II-D Discussions

	III Asynchronous Distributed Designs
	III-A Distributed EvoRL Workflow
	III-B Acceleration of Distributed Computing
	III-B1 Asynchronous Tree-shaped Data Broadcasting
	III-B2 Ray plus ZeroMQ

	III-C Asynchronous MDP Interface
	III-D Object-Oriented Software Architecture

	IV Benchmark Experiments
	IV-A Experimental Design
	IV-B Sampling Efficiency
	IV-C Data Broadcasting Efficiency
	IV-D Performance and Training Speed
	IV-E Discussion

	V Use Cases
	V-A Generating Behavior-Diverse Game AI
	V-B Game Balancing in RTS Game

	VI Conclusion
	References
	Biographies
	Hui Bai
	Ruimin Shen
	Yue Lin
	Botian Xu
	Ran Cheng

